These integration guides are not official documentation and the Strapi Support Team will not provide assistance with them.
What Is Flask?
Flask is a lightweight WSGI web application framework written in Python. It's a microframework that gives you the essential tools without forcing rigid structures or specific libraries—you pick components that fit your project's needs. When you integrate Flask with Strapi, you can create flexible and powerful web applications tailored to your specific requirements.
Flask embraces a clean, explicit application structure. You write what you need, when you need it; there’s no unnecessary boilerplate code. This makes it perfect for rapid prototyping and API development.
Flask’s minimal footprint creates an ideal foundation to integrate Flask with Strapi, a headless CMS solution. When you need apps that consume content from external sources while maintaining control over application logic and presentation, this combination delivers exactly that architecture.
Why Integrate Flask with Strapi
Strapi is an open-source headless CMS that delivers content management through APIs. Built with JavaScript, it offers an intuitive admin panel that works for both developers and non-technical users. When you integrate Flask with Strapi through the Strapi and Flask integration, you combine Strapi's content management strengths with Flask's lightweight Python framework, achieving an architecture that separates concerns effectively while taking the best from both worlds.
Integrating Flask with Strapi offers several benefits for modern web development, as it allows you to leverage the benefits of headless CMS. Flask handles your application logic, business rules, and data processing, while Strapi manages all content-related operations. This means your team works more efficiently—backend developers focus on Flask's Python ecosystem while content creators work through the user-friendly interface.
A significant advantage is that you don't need to build a custom admin interface for content management. Instead of spending time creating forms, validation systems, and content organization tools, you get a fully-featured admin panel ready to use. Content creators can add, edit, and organize material without technical knowledge or developer assistance.
The content-type builder lets you create custom content models tailored to your specific needs. Whether you're managing blog posts, product catalogs, user profiles, or complex relational data, the system adapts to your requirements. Your Flask application can then consume this structured content through customizable REST and GraphQL API, giving you flexibility in how you retrieve and process data. Understanding how to integrate APIs with Strapi allows you to fully leverage this flexibility in your application development.
The user and permission management system in Strapi allows for detailed access control, ensuring different user roles have appropriate permissions for both content management and API access. Integration with Flask's authentication mechanisms is possible through custom development, but it is not seamless or native.
This setup works especially well for content-rich applications needing frequent updates, multi-platform projects spanning web, mobile, and IoT, projects with non-technical content editors, and applications requiring complex content relationships like e-commerce platforms.
Keep in touch with the latest Strapi and Flask updates
How to Integrate Flask with Strapi for Deployment
Integrating Flask with Strapi seamlessly requires careful planning and implementation. This guide walks you through every step, from initial setup to deployment.
Technical Prerequisites and Initial Setup
Before integrating Flask with Strapi, you'll need Python 3.6+ and Node.js 12+. Make sure both pip and npm (or yarn) package managers are available from your command line.
You should understand REST API concepts and have basic knowledge of Python and JavaScript. Familiarity with your preferred code editor and command-line interface will help streamline development. Git is essential for version control.
Start by setting up your Strapi backend:
1npx create-strapi@latest my-strapi-project
2cd my-strapi-project
3npm run develop
Once running, access the admin panel at http://localhost:1337/admin. Create your administrator account and define your content structure using the Content-Type Builder. For a blog, you might create an "Article" content type with fields for title, content, author, and publication date.
After defining content types, configure API permissions in Settings → Roles to set up public or authenticated access to your API endpoints.
For Flask, create a new directory and set up a virtual environment:
1mkdir flask-strapi-integration
2cd flask-strapi-integration
3python -m venv venv
4source venv/bin/activate # On Windows: venv\Scripts\activate
Install the necessary packages:
1pip install flask requests python-dotenv flask-cors
Create your project structure:
1/flask-strapi-integration
2 /app
3 __init__.py
4 routes.py
5 strapi_client.py
6 config.py
7 .env
8 requirements.txt
9 run.py
Set up your environment variables in .env
:
1STRAPI_API_URL=http://localhost:1337/api
2STRAPI_TOKEN=your_strapi_api_token
3FLASK_ENV=development
4SECRET_KEY=your_secret_key_here
Creating a Strapi API Client in Flask
A dedicated API client class gives you a clean way to interact with your CMS backend. This centralizes all API communication logic and simplifies authentication, error handling, and response processing.
Create a strapi_client.py
file:
1import requests
2import os
3from dotenv import load_dotenv
4
5load_dotenv()
6
7class StrapiClient:
8 def __init__(self):
9 self.api_url = os.getenv('STRAPI_API_URL')
10 self.token = os.getenv('STRAPI_TOKEN')
11 self.headers = {
12 'Authorization': f'Bearer {self.token}',
13 'Content-Type': 'application/json'
14 }
15
16 def get_content(self, content_type, content_id=None, params=None):
17 endpoint = f"{self.api_url}/{content_type}"
18 if content_id:
19 endpoint = f"{endpoint}/{content_id}"
20
21 try:
22 response = requests.get(endpoint, headers=self.headers, params=params)
23 response.raise_for_status()
24 return response.json()
25 except requests.exceptions.RequestException as e:
26 print(f"Error fetching content: {e}")
27 return None
28
29 def create_content(self, content_type, data):
30 endpoint = f"{self.api_url}/{content_type}"
31
32 try:
33 response = requests.post(
34 endpoint,
35 headers=self.headers,
36 json={"data": data}
37 )
38 response.raise_for_status()
39 return response.json()
40 except requests.exceptions.RequestException as e:
41 print(f"Error creating content: {e}")
42 return None
43
44 def update_content(self, content_type, content_id, data):
45 endpoint = f"{self.api_url}/{content_type}/{content_id}"
46
47 try:
48 response = requests.put(
49 endpoint,
50 headers=self.headers,
51 json={"data": data}
52 )
53 response.raise_for_status()
54 return response.json()
55 except requests.exceptions.RequestException as e:
56 print(f"Error updating content: {e}")
57 return None
58
59 def delete_content(self, content_type, content_id):
60 endpoint = f"{self.api_url}/{content_type}/{content_id}"
61
62 try:
63 response = requests.delete(endpoint, headers=self.headers)
64 response.raise_for_status()
65 return response.json()
66 except requests.exceptions.RequestException as e:
67 print(f"Error deleting content: {e}")
68 return None
Now integrate this client into your Flask routes:
1# app/routes.py
2from flask import Blueprint, render_template, jsonify, request
3from app.strapi_client import StrapiClient
4
5main = Blueprint('main', __name__)
6strapi = StrapiClient()
7
8@main.route('/')
9def index():
10 articles = strapi.get_content('articles')
11 return render_template('index.html', articles=articles)
12
13@main.route('/api/articles')
14def get_articles():
15 articles = strapi.get_content('articles')
16 return jsonify(articles)
17
18@main.route('/api/articles', methods=['POST'])
19def create_article():
20 article_data = request.json
21 result = strapi.create_content('articles', article_data)
22 return jsonify(result)
23
24@main.route('/api/articles/<int:article_id>')
25def get_article(article_id):
26 article = strapi.get_content('articles', article_id)
27 return jsonify(article)
Authentication and Security Implementation
Security is critical when integrating Flask with a headless CMS. Proper authentication and authorization protect your application and ensure data integrity.
Implement JWT authentication for user sessions:
1pip install flask-jwt-extended
Set up JWT in your Flask application:
1# app/__init__.py
2from flask import Flask
3from flask_jwt_extended import JWTManager
4from dotenv import load_dotenv
5import os
6
7load_dotenv()
8
9def create_app():
10 app = Flask(__name__)
11 app.config['JWT_SECRET_KEY'] = os.getenv('SECRET_KEY')
12
13 jwt = JWTManager(app)
14
15 from app.routes import main
16 app.register_blueprint(main)
17
18 return app
Create authentication routes that interact with the CMS authentication system:
1# app/auth.py
2from flask import Blueprint, request, jsonify
3from flask_jwt_extended import create_access_token, jwt_required, get_jwt_identity
4import requests
5import os
6
7auth_bp = Blueprint('auth', __name__)
8
9@auth_bp.route('/login', methods=['POST'])
10def login():
11 data = request.get_json()
12
13 # Authenticate with Strapi
14 response = requests.post(
15 f"{os.getenv('STRAPI_API_URL').replace('/api', '')}/api/auth/local",
16 json={
17 'identifier': data.get('email'),
18 'password': data.get('password')
19 }
20 )
21
22 if response.status_code == 200:
23 auth_data = response.json()
24
25 # Create Flask JWT token
26 access_token = create_access_token(
27 identity=auth_data['user']['id'],
28 additional_claims={'strapi_token': auth_data['jwt']}
29 )
30
31 return jsonify({
32 'access_token': access_token,
33 'user': auth_data['user']
34 })
35
36 return jsonify({'message': 'Invalid credentials'}), 401
37
38@auth_bp.route('/protected', methods=['GET'])
39@jwt_required()
40def protected():
41 current_user = get_jwt_identity()
42 return jsonify({'user_id': current_user})
This integration approach provides a solid foundation for building scalable, maintainable applications that benefit from both Flask's flexibility and powerful content management capabilities.
Keep in touch with the latest Strapi and Flask updates
Project Examples: Integrate Flask with Strapi (+ GitHub Project Repo)
Two case studies show different approaches to building with Flask-Strapi integration, showcasing the real-world power of this stack.
Product Management System
This product management system combines Flask's flexibility with CMS content management. The headless CMS handles product data while Flask manages business logic and user interfaces.
The system defines three primary content types. Products contain fields for name, description, price, and category relationships. Categories manage product organization with hierarchical structures, while Inventory tracks stock levels and availability. This structure creates a flexible foundation that content managers can update without developer help.
Flask Implementation:
1from flask import Flask, render_template, request, jsonify
2import requests
3import os
4
5app = Flask(__name__)
6
7class StrapiClient:
8 def __init__(self):
9 self.base_url = os.getenv('STRAPI_API_URL', 'http://localhost:1337/api')
10 self.token = os.getenv('STRAPI_TOKEN')
11 self.headers = {
12 'Authorization': f'Bearer {self.token}',
13 'Content-Type': 'application/json'
14 }
15
16 def get_products(self, category=None):
17 endpoint = f"{self.base_url}/products"
18 if category:
19 endpoint += f"?filters[category][name][$eq]={category}"
20
21 response = requests.get(endpoint, headers=self.headers)
22 return response.json()
23
24 def create_product(self, product_data):
25 response = requests.post(
26 f"{self.base_url}/products",
27 headers=self.headers,
28 json={"data": product_data}
29 )
30 return response.json()
31
32strapi_client = StrapiClient()
33
34@app.route('/products')
35def product_list():
36 products = strapi_client.get_products()
37 return render_template('products.html', products=products['data'])
38
39@app.route('/products/<category>')
40def products_by_category(category):
41 products = strapi_client.get_products(category)
42 return render_template('products.html', products=products['data'])
43
44@app.route('/admin/products', methods=['GET', 'POST'])
45def admin_products():
46 if request.method == 'POST':
47 product_data = {
48 'name': request.form['name'],
49 'description': request.form['description'],
50 'price': float(request.form['price']),
51 'category': request.form['category']
52 }
53 result = strapi_client.create_product(product_data)
54 return jsonify(result)
55
56 products = strapi_client.get_products()
57 return render_template('admin_products.html', products=products['data'])
This shows Flask routes interacting with API endpoints, transforming JSON data into user-friendly interfaces while maintaining clean separation between content management and application logic.
AI Knowledge Base Application
This more complex architecture presents an AI-powered knowledge base combining React Native, Strapi, and Flask with LangChain for intelligent content retrieval. The headless CMS serves as the central content repository, managing articles and documentation. Flask acts as the middleware, connecting the React Native frontend to AI processing capabilities while interfacing with the API for content management.
Flask Middleware Implementation:
1from flask import Flask, request, jsonify
2from langchain.vectorstores import Chroma
3from langchain.embeddings import OpenAIEmbeddings
4from langchain.llms import OpenAI
5import requests
6import os
7
8app = Flask(__name__)
9
10class AIKnowledgeBase:
11 def __init__(self):
12 self.strapi_url = os.getenv('STRAPI_API_URL')
13 self.strapi_token = os.getenv('STRAPI_TOKEN')
14 self.openai_key = os.getenv('OPENAI_API_KEY')
15
16 # Initialize AI components
17 self.embeddings = OpenAIEmbeddings(openai_api_key=self.openai_key)
18 self.llm = OpenAI(openai_api_key=self.openai_key)
19 self.vectorstore = None
20
21 self.load_knowledge_base()
22
23 def fetch_articles_from_strapi(self):
24 headers = {'Authorization': f'Bearer {self.strapi_token}'}
25 response = requests.get(f"{self.strapi_url}/articles", headers=headers)
26 return response.json()['data']
27
28 def load_knowledge_base(self):
29 articles = self.fetch_articles_from_strapi()
30 texts = [article['data']['content'] for article in articles]
31 metadatas = [{'title': article['data']['title'], 'id': article['id']}
32 for article in articles]
33
34 self.vectorstore = Chroma.from_texts(
35 texts=texts,
36 metadatas=metadatas,
37 embedding=self.embeddings
38 )
39
40 def search_knowledge_base(self, query, k=5):
41 if not self.vectorstore:
42 return []
43
44 similar_docs = self.vectorstore.similarity_search(query, k=k)
45 return similar_docs
46
47ai_kb = AIKnowledgeBase()
48
49@app.route('/search', methods=['POST'])
50def search_knowledge():
51 query = request.json.get('query')
52 results = ai_kb.search_knowledge_base(query)
53
54 formatted_results = []
55 for doc in results:
56 formatted_results.append({
57 'content': doc.page_content,
58 'metadata': doc.metadata,
59 'relevance_score': doc.metadata.get('score', 0)
60 })
61
62 return jsonify({'results': formatted_results})
63
64@app.route('/ask', methods=['POST'])
65def ask_question():
66 question = request.json.get('question')
67
68 # Get relevant documents
69 relevant_docs = ai_kb.search_knowledge_base(question, k=3)
70 context = "\n".join([doc.page_content for doc in relevant_docs])
71
72 # Generate response using LLM
73 prompt = f"""
74 Based on the following context, answer the question: {question}
75
76 Context:
77 {context}
78
79 Answer:
80 """
81
82 response = ai_kb.llm(prompt)
83
84 return jsonify({
85 'answer': response,
86 'sources': [doc.metadata for doc in relevant_docs]
87 })
88
89@app.route('/refresh-knowledge-base', methods=['POST'])
90def refresh_knowledge_base():
91 ai_kb.load_knowledge_base()
92 return jsonify({'status': 'Knowledge base refreshed'})
This architecture shows several key advantages. Content creators manage articles through the intuitive admin interface without technical knowledge. Flask handles complex AI processing, transforming structured content into searchable vector embeddings and providing intelligent responses.
The system demonstrates how Flask bridges content management capabilities and advanced AI functionality, enabling sophisticated features while maintaining clean separation of concerns.
Strapi Open Office Hours
If you have any questions about Strapi 5 or just would like to stop by and say hi, you can join us at Strapi's Discord Open Office Hours, Monday through Friday, from 12:30 pm to 1:30 pm CST: Strapi Discord Open Office Hours.
For more details, visit the Strapi documentation and the Flask documentation.
FAQ
How do I set up a Flask-Strapi integration for deployment?
To set up a Flask-Strapi integration, start by installing Python 3.6+ and Node.js 12+, along with pip and npm or yarn. Set up your Strapi backend and define your content types. Then, create a new Flask project, configure environment variables for Strapi API URL and token, and utilize the Flask framework to interact with Strapi's APIs for content management.
What are some common challenges when integrating Flask with Strapi, and how can they be addressed?
Common challenges include managing authentication tokens securely, configuring CORS for cross-origin requests, optimizing performance with large datasets, and comprehensive error handling. These can be addressed by using environment variables for secure token storage, properly setting CORS policies, implementing caching strategies, and developing robust error handling mechanisms.
How does Flask handle authentication and security with Strapi?
Flask can handle authentication and security with Strapi through JWT authentication for user sessions. Developers can set up JWT in Flask to manage user identities and secure routes, while Strapi's built-in authentication system can be used to secure content management operations.
Can I use Flask and Strapi for a production environment?
Yes, Flask and Strapi are both suitable for production environments. When deploying to production, consider using a WSGI server like Gunicorn for Flask, securely configure your environment variables, and ensure your Strapi backend is properly secured and optimized for performance. Docker can also be used to containerize and manage both applications for scalable deployment.
Where can I find more support or examples of Flask-Strapi integration?
For additional support and examples of Flask-Strapi integration, consider checking Strapi’s community forums, GitHub repositories for open-source projects, and Strapi’s official documentation. Strapi Open Office Hours sessions are also a valuable resource, offering direct support from experts and insights into real-world integration challenges and solutions.