These integration guides are not official documentation and the Strapi Support Team will not provide assistance with them.
What Is Flask?
Flask is a lightweight WSGI web application framework written in Python. It's a microframework that gives you the essential tools without forcing rigid structures or specific libraries—you pick components that fit your project's needs. When you integrate Flask with Strapi, you can create flexible and powerful web applications tailored to your specific requirements.
Flask embraces a clean, explicit application structure. You write what you need, when you need it; there’s no unnecessary boilerplate code. This makes it perfect for rapid prototyping and API development.
Flask’s minimal footprint creates an ideal foundation to integrate Flask with Strapi, a headless CMS solution. When you need apps that consume content from external sources while maintaining control over application logic and presentation, this combination delivers exactly that architecture.
Why Integrate Flask with Strapi
Strapi is an open-source headless CMS that delivers content management through APIs. Built with JavaScript, it offers an intuitive admin panel that works for both developers and non-technical users. When you integrate Flask with Strapi through the Strapi and Flask integration, you combine Strapi's content management strengths with Flask's lightweight Python framework, achieving an architecture that separates concerns effectively while taking the best from both worlds.
Integrating Flask with Strapi offers several benefits for modern web development, as it allows you to leverage the benefits of headless CMS. Flask handles your application logic, business rules, and data processing, while Strapi manages all content-related operations. This means your team works more efficiently—backend developers focus on Flask's Python ecosystem while content creators work through the user-friendly interface.
A significant advantage is that you don't need to build a custom admin interface for content management. Instead of spending time creating forms, validation systems, and content organization tools, you get a fully-featured admin panel ready to use. Content creators can add, edit, and organize material without technical knowledge or developer assistance.
The content-type builder lets you create custom content models tailored to your specific needs. Whether you're managing blog posts, product catalogs, user profiles, or complex relational data, the system adapts to your requirements. Your Flask application can then consume this structured content through customizable REST and GraphQL API, giving you flexibility in how you retrieve and process data. Understanding how to integrate APIs with Strapi allows you to fully leverage this flexibility in your application development.
The user and permission management system in Strapi allows for detailed access control, ensuring different user roles have appropriate permissions for both content management and API access. Integration with Flask's authentication mechanisms is possible through custom development, but it is not seamless or native.
This setup works especially well for content-rich applications needing frequent updates, multi-platform projects spanning web, mobile, and IoT, projects with non-technical content editors, and applications requiring complex content relationships like e-commerce platforms.
Keep in touch with the latest Strapi and Flask updates
How to Integrate Flask with Strapi for Deployment
Integrating Flask with Strapi seamlessly requires careful planning and implementation. This guide walks you through every step, from initial setup to deployment.
Technical Prerequisites and Initial Setup
Before integrating Flask with Strapi, you'll need Python 3.6+ and Node.js 12+. Make sure both pip and npm (or yarn) package managers are available from your command line.
You should understand REST API concepts and have basic knowledge of Python and JavaScript. Familiarity with your preferred code editor and command-line interface will help streamline development. Git is essential for version control.
Start by setting up your Strapi backend:
npx create-strapi@latest my-strapi-project
cd my-strapi-project
npm run developOnce running, access the admin panel at http://localhost:1337/admin. Create your administrator account and define your content structure using the Content-Type Builder. For a blog, you might create an "Article" content type with fields for title, content, author, and publication date.
After defining content types, configure API permissions in Settings → Roles to set up public or authenticated access to your API endpoints.
For Flask, create a new directory and set up a virtual environment:
mkdir flask-strapi-integration
cd flask-strapi-integration
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activateInstall the necessary packages:
pip install flask requests python-dotenv flask-corsCreate your project structure:
/flask-strapi-integration
/app
__init__.py
routes.py
strapi_client.py
config.py
.env
requirements.txt
run.pySet up your environment variables in .env:
STRAPI_API_URL=http://localhost:1337/api
STRAPI_TOKEN=your_strapi_api_token
FLASK_ENV=development
SECRET_KEY=your_secret_key_hereCreating a Strapi API Client in Flask
A dedicated API client class gives you a clean way to interact with your CMS backend. This centralizes all API communication logic and simplifies authentication, error handling, and response processing.
Create a strapi_client.py file:
import requests
import os
from dotenv import load_dotenv
load_dotenv()
class StrapiClient:
def __init__(self):
self.api_url = os.getenv('STRAPI_API_URL')
self.token = os.getenv('STRAPI_TOKEN')
self.headers = {
'Authorization': f'Bearer {self.token}',
'Content-Type': 'application/json'
}
def get_content(self, content_type, content_id=None, params=None):
endpoint = f"{self.api_url}/{content_type}"
if content_id:
endpoint = f"{endpoint}/{content_id}"
try:
response = requests.get(endpoint, headers=self.headers, params=params)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"Error fetching content: {e}")
return None
def create_content(self, content_type, data):
endpoint = f"{self.api_url}/{content_type}"
try:
response = requests.post(
endpoint,
headers=self.headers,
json={"data": data}
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"Error creating content: {e}")
return None
def update_content(self, content_type, content_id, data):
endpoint = f"{self.api_url}/{content_type}/{content_id}"
try:
response = requests.put(
endpoint,
headers=self.headers,
json={"data": data}
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"Error updating content: {e}")
return None
def delete_content(self, content_type, content_id):
endpoint = f"{self.api_url}/{content_type}/{content_id}"
try:
response = requests.delete(endpoint, headers=self.headers)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"Error deleting content: {e}")
return NoneNow integrate this client into your Flask routes:
# app/routes.py
from flask import Blueprint, render_template, jsonify, request
from app.strapi_client import StrapiClient
main = Blueprint('main', __name__)
strapi = StrapiClient()
@main.route('/')
def index():
articles = strapi.get_content('articles')
return render_template('index.html', articles=articles)
@main.route('/api/articles')
def get_articles():
articles = strapi.get_content('articles')
return jsonify(articles)
@main.route('/api/articles', methods=['POST'])
def create_article():
article_data = request.json
result = strapi.create_content('articles', article_data)
return jsonify(result)
@main.route('/api/articles/<int:article_id>')
def get_article(article_id):
article = strapi.get_content('articles', article_id)
return jsonify(article)Authentication and Security Implementation
Security is critical when integrating Flask with a headless CMS. Proper authentication and authorization protect your application and ensure data integrity.
Implement JWT authentication for user sessions:
pip install flask-jwt-extendedSet up JWT in your Flask application:
# app/__init__.py
from flask import Flask
from flask_jwt_extended import JWTManager
from dotenv import load_dotenv
import os
load_dotenv()
def create_app():
app = Flask(__name__)
app.config['JWT_SECRET_KEY'] = os.getenv('SECRET_KEY')
jwt = JWTManager(app)
from app.routes import main
app.register_blueprint(main)
return appCreate authentication routes that interact with the CMS authentication system:
# app/auth.py
from flask import Blueprint, request, jsonify
from flask_jwt_extended import create_access_token, jwt_required, get_jwt_identity
import requests
import os
auth_bp = Blueprint('auth', __name__)
@auth_bp.route('/login', methods=['POST'])
def login():
data = request.get_json()
# Authenticate with Strapi
response = requests.post(
f"{os.getenv('STRAPI_API_URL').replace('/api', '')}/api/auth/local",
json={
'identifier': data.get('email'),
'password': data.get('password')
}
)
if response.status_code == 200:
auth_data = response.json()
# Create Flask JWT token
access_token = create_access_token(
identity=auth_data['user']['id'],
additional_claims={'strapi_token': auth_data['jwt']}
)
return jsonify({
'access_token': access_token,
'user': auth_data['user']
})
return jsonify({'message': 'Invalid credentials'}), 401
@auth_bp.route('/protected', methods=['GET'])
@jwt_required()
def protected():
current_user = get_jwt_identity()
return jsonify({'user_id': current_user})This integration approach provides a solid foundation for building scalable, maintainable applications that benefit from both Flask's flexibility and powerful content management capabilities.
Keep in touch with the latest Strapi and Flask updates
Project Examples: Integrate Flask with Strapi (+ GitHub Project Repo)
Two case studies show different approaches to building with Flask-Strapi integration, showcasing the real-world power of this stack.
Product Management System
This product management system combines Flask's flexibility with CMS content management. The headless CMS handles product data while Flask manages business logic and user interfaces.
The system defines three primary content types. Products contain fields for name, description, price, and category relationships. Categories manage product organization with hierarchical structures, while Inventory tracks stock levels and availability. This structure creates a flexible foundation that content managers can update without developer help.
Flask Implementation:
from flask import Flask, render_template, request, jsonify
import requests
import os
app = Flask(__name__)
class StrapiClient:
def __init__(self):
self.base_url = os.getenv('STRAPI_API_URL', 'http://localhost:1337/api')
self.token = os.getenv('STRAPI_TOKEN')
self.headers = {
'Authorization': f'Bearer {self.token}',
'Content-Type': 'application/json'
}
def get_products(self, category=None):
endpoint = f"{self.base_url}/products"
if category:
endpoint += f"?filters[category][name][$eq]={category}"
response = requests.get(endpoint, headers=self.headers)
return response.json()
def create_product(self, product_data):
response = requests.post(
f"{self.base_url}/products",
headers=self.headers,
json={"data": product_data}
)
return response.json()
strapi_client = StrapiClient()
@app.route('/products')
def product_list():
products = strapi_client.get_products()
return render_template('products.html', products=products['data'])
@app.route('/products/<category>')
def products_by_category(category):
products = strapi_client.get_products(category)
return render_template('products.html', products=products['data'])
@app.route('/admin/products', methods=['GET', 'POST'])
def admin_products():
if request.method == 'POST':
product_data = {
'name': request.form['name'],
'description': request.form['description'],
'price': float(request.form['price']),
'category': request.form['category']
}
result = strapi_client.create_product(product_data)
return jsonify(result)
products = strapi_client.get_products()
return render_template('admin_products.html', products=products['data'])This shows Flask routes interacting with API endpoints, transforming JSON data into user-friendly interfaces while maintaining clean separation between content management and application logic.
AI Knowledge Base Application
This more complex architecture presents an AI-powered knowledge base combining React Native, Strapi, and Flask with LangChain for intelligent content retrieval. The headless CMS serves as the central content repository, managing articles and documentation. Flask acts as the middleware, connecting the React Native frontend to AI processing capabilities while interfacing with the API for content management.
Flask Middleware Implementation:
from flask import Flask, request, jsonify
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
import requests
import os
app = Flask(__name__)
class AIKnowledgeBase:
def __init__(self):
self.strapi_url = os.getenv('STRAPI_API_URL')
self.strapi_token = os.getenv('STRAPI_TOKEN')
self.openai_key = os.getenv('OPENAI_API_KEY')
# Initialize AI components
self.embeddings = OpenAIEmbeddings(openai_api_key=self.openai_key)
self.llm = OpenAI(openai_api_key=self.openai_key)
self.vectorstore = None
self.load_knowledge_base()
def fetch_articles_from_strapi(self):
headers = {'Authorization': f'Bearer {self.strapi_token}'}
response = requests.get(f"{self.strapi_url}/articles", headers=headers)
return response.json()['data']
def load_knowledge_base(self):
articles = self.fetch_articles_from_strapi()
texts = [article['data']['content'] for article in articles]
metadatas = [{'title': article['data']['title'], 'id': article['id']}
for article in articles]
self.vectorstore = Chroma.from_texts(
texts=texts,
metadatas=metadatas,
embedding=self.embeddings
)
def search_knowledge_base(self, query, k=5):
if not self.vectorstore:
return []
similar_docs = self.vectorstore.similarity_search(query, k=k)
return similar_docs
ai_kb = AIKnowledgeBase()
@app.route('/search', methods=['POST'])
def search_knowledge():
query = request.json.get('query')
results = ai_kb.search_knowledge_base(query)
formatted_results = []
for doc in results:
formatted_results.append({
'content': doc.page_content,
'metadata': doc.metadata,
'relevance_score': doc.metadata.get('score', 0)
})
return jsonify({'results': formatted_results})
@app.route('/ask', methods=['POST'])
def ask_question():
question = request.json.get('question')
# Get relevant documents
relevant_docs = ai_kb.search_knowledge_base(question, k=3)
context = "\n".join([doc.page_content for doc in relevant_docs])
# Generate response using LLM
prompt = f"""
Based on the following context, answer the question: {question}
Context:
{context}
Answer:
"""
response = ai_kb.llm(prompt)
return jsonify({
'answer': response,
'sources': [doc.metadata for doc in relevant_docs]
})
@app.route('/refresh-knowledge-base', methods=['POST'])
def refresh_knowledge_base():
ai_kb.load_knowledge_base()
return jsonify({'status': 'Knowledge base refreshed'})This architecture shows several key advantages. Content creators manage articles through the intuitive admin interface without technical knowledge. Flask handles complex AI processing, transforming structured content into searchable vector embeddings and providing intelligent responses.
The system demonstrates how Flask bridges content management capabilities and advanced AI functionality, enabling sophisticated features while maintaining clean separation of concerns.
Strapi Open Office Hours
If you have any questions about Strapi 5 or just would like to stop by and say hi, you can join us at Strapi's Discord Open Office Hours, Monday through Friday, from 12:30 pm to 1:30 pm CST: Strapi Discord Open Office Hours.
For more details, visit the Strapi documentation and the Flask documentation.